TMS165/MSA350 Stochastic Calculus Written exam Tuesday 26 October 2021 8.30–12.30

TEACHER AND JOUR ON TELEPHONE: Patrik Albin 031 7723512.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t>0}$ denotes a Brownian motion.

Task 1. Can a non-constant random process have its variation process equal to itsquadratic variation process?(5 points)

Task 2. Let X be a Poisson distributed random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and define $\mathcal{G} \subseteq \mathcal{F}$ by $\mathcal{G} = \{\emptyset, A, A^c, \Omega\}$ where $A = \{\omega \in \Omega : X(\omega) = 0\}$. Calculate $\mathbf{E}\{X|\mathcal{G}\}$. (5 points)

Task 3. Is there a function $f : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ such that $\{\int_0^t B(r) dr + f(B(t), t)\}_{t \ge 0}$ is a martingale? (5 points)

Task 4. Solve the Stratonovich SDE $dX(t) = -\alpha dt + \sigma X(t) \partial B(t)$ for $t \ge 0$, $X(0) = x_0$, where α , σ and x_0 are real constants. (5 points)

Task 5. In the following list of probability measures for a random variable X, find all pairs of equivalent measures: (a) X is standard normal, (b) X is normal with expectation 1 and variance 2, (c) $\ln(X)$ is standard normal, (d) $\ln(X)$ is normal with expectation 1 and variance 2, (e) X is exponential distributed with expectation 1, (f) X is uniformly distributed over the interval [0, 1], (g) X is uniformly distributed over the interval [0, 2], (h) X is binomial distributed with parameters n = 1 and p = 0.5, (i) X is binomial distributed with parameters n = 1 and p = 0.5, (i) X is binomial distributed with parameters $\lambda = 1$, (l) X is poisson distributed with parameter $\lambda = 2$. (5 points)

Task 6. Grönwall's lemma that $\phi(t) \leq A + B \int_0^t \phi(s) ds$ implies $\phi(t) \leq A e^{Bt}$ is true for constants $A, B \geq 0$ although we have only seen the proof for A, B > 0. How is the proof done for $A, B \geq 0$? (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 26 October 2021

Task 1. Yes, this will be the case for any pure jump process with all jumps being of unit height.

Task 2. $\mathbf{E}\{X|\mathcal{G}\}(\omega) = 0$ for $\omega \in A$ and $\mathbf{E}\{X|\mathcal{G}\}(\omega) = \mathbf{E}\{X\}/\mathbf{P}\{X>0\}$ for $\omega \in A^c$.

Task 3. Yes f(x,t) = -tx will work as $\mathbf{E}\{\int_0^t B(r) dr - tB(t) | \mathcal{F}_s^B\} = \int_0^s B(r) dr + \mathbf{E}\{\int_s^t (B(r) - B(s)) dr\} + (t-s) B(s) - tB(s)$ for $0 \le s \le t$ where the second expectation on the right-hand side is zero.

Task 4. By Theorem 5.20 in Klebaner's book the Stratonovicdh SDE is equivalent to the Itô SDE $dX(t) = (\frac{1}{2}\sigma^2 X(t) - \alpha) dt + \sigma X(t) dB(t)$ for $t \ge 0$, $X(0) = x_0$. This in turn is a special case of the linear SDE treated in Section 5.3 with solution $X(t) = e^{\sigma B(t)} (x_0 - \alpha \int_0^t e^{-\sigma B(s)} ds)$.

Task 5. $\{(a),(b)\}, \{(c),(d),(e)\}, \{(h),(i)\} \text{ and } \{(k),(l)\}.$

Task 6. Add $\varepsilon > 0$ to A and B and use the proof we have done for these increased A and B constants. Then send $\varepsilon \downarrow 0$ afterwards.